

FUNÇÃO QUADRÁTICA

OBJETIVO: Estudar o comportamento do gráfico da função $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = ax^2 + bx + c$ a partir da variação dos coeficientes a, b, c.

ATIVIDADE EXPLORATÓRIA¹

Utilize os controles deslizantes (indicados de azul) para alterar o valor dos coeficientes a, b, c e responda:

coeficientes a, b, c e responda:
1) Para cada trio de coeficientes (a, b, c) reais fixados, existe um(a) sóassociado(a) a estes coeficientes.
2) Se $a = 0$ é mantido fixo e b e c tiverem a liberdade de variar que tipo(s) de função
poderemos obter a partir da variação destes coeficientes? Qual condição garante a
existência da função quadrática?
3) Se $a \neq 0$, $b = 0$, $c = 0$ temos uma função real f definida por $f(x) = ax^2$ cujo
gráfico é uma: Utilize o controle deslizante (indicado de
azul) para alterar o valor do coeficiente a e registre suas ideias:
4) Utilize os controles deslizantes (indicados de azul) para fixar o valor do coeficiente <i>a</i>
em um número real não nulo $(a \neq 0)$ e o coeficiente b em um número nulo $(b = 0)$.
Altere o valor do coeficiente c por meio do controle deslizante e registre suas ideias:
5) O que explica o fato de "o eixo das ordenadas aparecer como eixo de simetria da
parábola" indicada no item anterior?
6) Quando a função quadrática definida por $f(x) = ax^2 + bx + c$ possuir todos os
coeficientes não nulos, por onde passa o eixo de simetria do gráfico do gráfico?
7) O ponto $V(-\frac{b}{2a}, -\frac{\Delta}{4a})$ refere-se as coordenadas do vértice da parábola. Alterando o
valor do coeficiente b por meio do controle deslizante, o lugar geométrico percorrido
pelo vértice da parábola è
¹ Atividade elaborada pelo prof. Fredy Coelho Rodrigues, IESUI DEMINAS, Campus Passos.

- 8) Que relação existe entre "um" dos coeficientes (a,b,c) estudados e o ponto de interseção da parábola com o das ordenadas? Justifique.
- 9) O(s) ponto(s) de interseção da parábola com o eixo das abscissas é(são) chamado(s) de raiz(es) da função. Encontre uma relação entre o número de raízes reais e o valor do Δ e registre suas ideias. Obs: $\Delta = b^2 4ac$.
- 10) Encontre uma relação matemática que associa os coeficientes da função quadrática e suas raízes, quando existirem.